Regulatory Phosphorylation of C4 Phosphoenolpyruvate Carboxylase (A Cardinal Event Influencing the Photosynthesis Rate in Sorghum and Maize).
نویسندگان
چکیده
C4 leaf phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is subject to a day/night regulatory phosphorylation cycle. By using the cytoplasmic protein synthesis inhibitor cycloheximide (CHX), we previously reported that the reversible in vivo light activation of the C4 PEPC protein-serine kinase requires protein synthesis. In the present leaf gas-exchange study, we have examined how and to what extent the CHX-induced inhibition of PEPC protein kinase activity/PEPC phosphorylation in the light influences C4 photosynthesis. Detached Sorghum vulgare and maize (Zea mays) leaves fed 10 [mu]M CHX showed a gradual but marked decrease in photosynthetic CO2 assimilation capacity. A series of control experiments designed to assess deleterious secondary effects of the inhibitor established that this reduction in C4 leaf CO2 assimilation was not due to (a) an increased stomatal resistance to CO2 diffusion, (b) a decrease in the activation state of other photoactivated C4 cycle enzymes, and (c) a perturbation of the Benson-Calvin C3 cycle, as evidenced by the absence of an inhibitory effect of CHX on leaf photosynthesis by a C3 grass (Triticum aestivum). It is notable that the CHX-induced decrease in CO2 assimilation by illuminated Sorghum leaves was highly correlated with a decrease in the apparent phosphorylation status of PEPC and a concomitant change in carbon isotope discrimination consistent with a shift from a C4 to a C3 mode of leaf CO2 fixation. These collective findings indicate that the light-dependent activation of the PEPC protein-serine kinase and the resulting phosphorylation of serine-8 or serine-15 in Sorghum or maize PEPC, respectively, are fundamental regulatory events that influence leaf C4 photosynthesis in vivo.
منابع مشابه
In Vivo Regulatory Phosphorylation Site in C 4 - Leaf Phosphoenolpyruvate Carboxylase from Maize and Sorghum 1
Reversible seryl-phosphorylation contributes to the light/dark regulation of C4-leaf phosphoenolpyruvate carboxylase (PEPC) activity in vivo. The specific regulatory residue that, upon in vitro phosphorylation by a maize-leaf protein-serine kinase(s), leads to an increase in catalytic activity and a decrease in malatesensitivity of the target enzyme has been recently identified as Ser-15 in 32P...
متن کاملIn Vivo Regulatory Phosphorylation Site in C 4 - Leaf Phosphoenolpyruvate Carboxylase from Maize and Sorghum 1
Reversible seryl-phosphorylation contributes to the light/dark regulation of C4-leaf phosphoenolpyruvate carboxylase (PEPC) activity in vivo. The specific regulatory residue that, upon in vitro phosphorylation by a maize-leaf protein-serine kinase(s), leads to an increase in catalytic activity and a decrease in malatesensitivity of the target enzyme has been recently identified as Ser-15 in 32P...
متن کاملIn vivo regulatory phosphorylation site in c(4)-leaf phosphoenolpyruvate carboxylase from maize and sorghum.
Reversible seryl-phosphorylation contributes to the light/dark regulation of C(4)-leaf phosphoenolpyruvate carboxylase (PEPC) activity in vivo. The specific regulatory residue that, upon in vitro phosphorylation by a maize-leaf protein-serine kinase(s), leads to an increase in catalytic activity and a decrease in malate-sensitivity of the target enzyme has been recently identified as Ser-15 in ...
متن کاملA Common histone modification code on C4 genes in maize and its conservation in Sorghum and Setaria italica.
C4 photosynthesis evolved more than 60 times independently in different plant lineages. Each time, multiple genes were recruited into C4 metabolism. The corresponding promoters acquired new regulatory features such as high expression, light induction, or cell type-specific expression in mesophyll or bundle sheath cells. We have previously shown that histone modifications contribute to the regul...
متن کاملProtein turnover as a component in the light/dark regulation of phosphoenolpyruvate carboxylase protein-serine kinase activity in C4 plants.
Maize leaf phosphoenolpyruvate carboxylase [PEPC; orthophosphate:oxaloacetate carboxy-lyase (phosphorylating), EC 4.1.1.31] protein-serine kinase (PEPC-PK) phosphorylates serine-15 of its target enzyme, thus leading to an increase in catalytic activity and a concomitant decrease in malate sensitivity of this cytoplasmic C4 photosynthesis enzyme in the light. We have recently demonstrated that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 101 3 شماره
صفحات -
تاریخ انتشار 1993